d"absorption - traducción al francés
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

d"absorption - traducción al francés

THEOREM
Absorption identities; Absorption Identities; Absorption Law; Absorption laws; Absorption identity

d'absorption      
imbibitional, of drinking; of absorption; of reception

Definición

Absorption
Absorption is investment and consumption purchases by households,businesses, and governments, both domestic and imported. When absorption exceeds production, the excess is the country's current account deficit.

Wikipedia

Absorption law

In algebra, the absorption law or absorption identity is an identity linking a pair of binary operations.

Two binary operations, ¤ and ⁂, are said to be connected by the absorption law if:

a ¤ (ab) = a ⁂ (a ¤ b) = a.

A set equipped with two commutative and associative binary operations {\displaystyle \scriptstyle \lor } ("join") and {\displaystyle \scriptstyle \land } ("meet") that are connected by the absorption law is called a lattice; in this case, both operations are necessarily idempotent.

Examples of lattices include Heyting algebras and Boolean algebras, in particular sets of sets with union and intersection operators, and ordered sets with min and max operations.

In classical logic, and in particular Boolean algebra, the operations OR and AND, which are also denoted by {\displaystyle \scriptstyle \lor } and {\displaystyle \scriptstyle \land } , satisfy the lattice axioms, including the absorption law. The same is true for intuitionistic logic.

The absorption law does not hold in many other algebraic structures, such as commutative rings, e.g. the field of real numbers, relevance logics, linear logics, and substructural logics. In the last case, there is no one-to-one correspondence between the free variables of the defining pair of identities.